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Abstract

A modified first-order kinetic law which takes into account defect decay during an ordering process

was employed to predict the short-range-order kinetics of a quenched and a quenched-deformed

Cu–5 at.% Zn alloy, in conjunction with experiments performed by isothermal calorimetry. The ef-

fective activation energy of point defect migration and its temperature dependence strongly suggest

the contribution of bound vacancies to the ordering process. An estimate of 91.2 kJ mol–1 was made

for the activation energy of solute–vacancy migration by applying an effective rate constant, a value

in very good agreement with that obtained from previous non-isothermal experiments. The isother-

mal curves were utilized to determine the ordering energy: w= –2.90 kJ mol–1. In conjunction, a para-

metric study of the defect sink density was performed in order to assess its influence on the calcu-

lated isothermal curve profiles.
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Introduction

Experiments involving short-range-ordering (SRO) kinetics are usually performed

after an alloy is quenched from rather high temperatures. Some experiments concen-

trate on the adjustment of the new equilibrium state of SRO after small and sudden

temperature changes [1, 2]. More recent ones are concerned with the influence of

cold working [3–5]. All the results are influenced somewhat by the experimental

technique and the type of experiment performed. As quenching experiments still pro-

vide information about how an excess of point defects frozen in during a quench can

affect the ordering kinetics [6–11], the effects of decay during the ordering process

need to be considered quantitatively in more detail. Moreover, the presence of

solute–vacancy complexes has often been disregarded when effective values of the
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activation energy of defect migration are measured, and the solute–vacancy binding

energy is not negligible.

The present work a) applies a modified first-order kinetic law which describes

the SRO kinetics to determine the effective activation energy of point defect migra-

tion in Cu–5 at.% Zn, and to estimate the dislocation density in the deformed alloy

condition, b) makes an assessment of the activation energy of solute–vacancy pair

migration, c) determines the ordering energy from energetic equations by using a

suitable plot, and d) utilizes isothermal calorimetry as an experimental tool in order to

study SRO kinetics.

Theoretical background

Effective rate constant for SRO

The effective rate at which order is established for a point defect mechanism which

includes bound and unbound vacancies is related to the total instantaneous defect

concentration, ct, and to the effective mean rate at which defect atom exchange oc-

curs, i.e. by

kt(T) = ct(T)υt(T) (1)

in which
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υ0t being the effective jump frequency constant, E the effective activation energy of

total defect migration, T the absolute temperature, and R the universal gas constant.

Here, it will be considered that ct=cu+cb, with cu and cb equal to the unbound and

bound vacancy concentrations. For both diluted and non-diluted alloys, it holds [11]

that
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where Z is the coordination number, xt is the solute concentration and B is the

solute–vacancy binding energy. Thus:
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where ψb(T) is here termed the equilibrium transfer function.
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As dynamic equilibrium exists during quenching, the concentrations cb(Tz) and

cu(Tz) at the actual freezing temperature can readily be calculated from

cb(Tz)=ct(Tz)ψb(Tz) and cu(Tz)=ct(Tz)(1–ψb(Tz)). The freezing temperature Tz can be es-

timated [8] from

E

RT
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where τ0=10–6 s [8] and φq is the cooling rate.

It should be pointed out that the more mobile unbound vacancies with migration

energy Em determine Tz. Since for this alloy concentration, cb is close to cu, separating

somewhat with increasing temperature [12], it is safe to take as a first approximation

and average activation energy of defect formation ct(Tz)=Asexp(–Eef/RTz), where

Eef=Ef–B/2 and As≈2 [8].

For simultaneous unbound and bound vacancy mechanisms, the effective rate

constant can be given as

υt(T)ct(T)=υu(T)cu(T)+υb(T)cb(T) (6)

where υu(T) and υb(T) are the jump frequencies of unbound and bound vacancies.

The idea involved in Eq. (6) is that the entire population of vacancies, both un-

bound and bound, is assigned one effective jump frequency, υt(T)=υ0mexp(–E/RT),

which is obtained as a weighted sum of simpler jump frequencies describing individ-

ual processes. From Eqs (4) and (6), at temperature T, after small transients during the

change from the quench-in temperature to the annealing temperature [13]:

υt=υu(1–ψb(T))+υbψb(T) (7)

The simpler jump frequencies are given by υu(T)=υ0mexp(–Em/RT) and υb(T)=

υ0mexp(–Ec/RT), where Ec is the activation energy of migration of bound vacancies.

The attempt frequency is considered to be the same for the effective frequency and

for unbound and bound vacancies [13]. Its value is given by υ0m=12υ0exp(∆Sm/R) for

f.c.c. alloys, where υ0 is the Debye frequency and ∆Sm is the activation entropy for

free vacancies [10]. Thus:
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This relationship will be used later to estimate Ec.

Effective defect decay and short-range-ordering kinetics

Here, we consider that the sink strengths of bound and unbound vacancies are the

same and that the total vacancy supersaturation follows a first-order kinetic path, as

expected from its elimination at fixed sinks [14]. Defect supersaturation, formally de-

fined as S c T c T c T c T= − −( ( ) ( ))/( ( ) ( ))t t

eq

t z t

eq
, decays according to
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d
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d

S
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=−k S (9)

where ct(T), ct

eq
and ct(Tz) are the instantaneous, equilibrium and initial defect con-

centrations, respectively, and kd(T)=ρtυt(T) is the rate constant. ρ, the effective sink

density, is given by

ρ=ρd+ρg (10)

where ρd, the sink density for dislocations, can be obtained from
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with rs equal to the average distance between dislocations, rc the capture radius of a

dislocation, δ the dislocation density and b the atom jump distance. For grain bound-

aries, the sink density ρg is given by

ρ
λ

g =
L2

(12)

where λ=a0

2 12/ for f.c.c. metals, a0 is the lattice parameter and L is the grain size.

With use of the definition of S, integration of Eq. (11) yields
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As long as the ordering reaction follows a first-order kinetic law [14, 15], by

analogy with non-isothermal experiments [8], the reacted fraction for isothermal con-

ditions, y, can be written as
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From Eqs (1) and (13), integration of Eq. (14) leads to
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where kt(0) and k Tt

eq
( ) are the initial and equilibrium rate constants at the annealing

temperature, respectively. This equation describes the ordering features considering

the parallel evolution of defect supersaturation.

Numerical results and discussion

The preparation details relating to similar alloys can be found elsewhere [9]. One

group of specimens were annealed at 973 K, followed by quenching, while another

group were quenched from the same temperature and subsequently 40% cold-rolled.
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The quench prior deformation was made to achieve a defined reference state of order.

A freezing temperature Tz=950 K was calculated by using Eq. (5).

Figure 1 depicts the differential isothermal calorimetric traces for the annealed

and quenched alloys at the indicated temperatures. As expected, the higher the an-

nealing temperature, the sharper the curves are, indicating a higher rate of reaction

here, characterized by one exothermic peak. Further, the area of the peaks decreases

with increasing temperature because a lower equilibrium degree of order is reached,

as expected.

In the following, the effective activation energy of total defect migration will be

estimated according to Eq. (15). Before this, the required parameters must be se-

lected. For a typical annealed material, the dislocation density is about δ=107 cm–2

[8]. For this value, the term 2πb2/ln(rs/rc) in Eq. (11), which is relative insensitive to
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Fig. 1 Isothermal traces at the indicated temperatures for Cu–5 at.% Zn quenched from
973 K

Fig. 2 Reacted fraction vs. time curves at the indicated temperatures, with the effective
activation energy of defect migration used as an adjusting parameter



the dislocation density for annealed alloys, was 4.4⋅10–16 cm2, and hence ρd=4.4⋅10–9.

The measured grain size was L=100 µm, a0=0.36 nm and λ=1.1⋅10–16 cm2; thus from

Eq. (12), ρg=1.1⋅10–12, which is negligible as compared with ρd for this grain size. The

effective activation energy of defect formation was taken as Ef–B/2, the activation en-

ergy for unbound vacancies being Ef=90.8 kJ mol–1 [15] and the solute–vacancy bind-

ing energy B=21.8 kJ mol–1 [9], and the frequency constant was taken as υ0m=

4.3⋅1014 s–1 [9]. In order to calculate the freezing temperature, the quench time was

measured and estimated as 200 ms, giving a quench rate φq=3.5⋅103 K s–1. The activa-

tion energy of unbound vacancy migration was obtained as an interpolated value be-

tween those for pure copper and Cu–30 at.% Zn [15], giving Em=80 kJ mol–1. The re-

acted fraction y(t) is the integral of the curves up to time t divided by the total area un-

der the curve. With the above chosen parameters, two y vs. t curves at the extreme

chosen indicated temperatures were plotted in Fig. 2. The best fits of the model to the

experimental curves were obtained for effective migration energies of 83.2 and

81.8 kJ mol–1 at 380 and 420 K, respectively. From similar curves not shown here,

values of 82.9, 82.2 and 81.1 kJ mol–1 were found at 390, 400 and 410 K, respectively.

The larger effective activation energies than that for monovacancies, together with

the slight systematic increase at lower temperatures, is consistent with the presence

and also with the relative increase in the less mobile bound vacancies with respect to

the unbound ones as the temperature decreases. In order to estimate the activation en-

ergy of migration of bound vacancies Ec, Eq. (8) can be rewritten as
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With the right-side term of Eq. (16) designated by β(T), a plot of β vs. 1/T re-

sulted in a straight line, as shown in Fig. 3. The slope of this line, Ec/R, gives

Ec=91.2 kJ mol–1

Such a value is quite reasonable since it lies between Em and Em+B, the activa-

tion energy for complex dissolution [13, 16]. These results also confirm that in this

alloy the bound vacancies are less mobile than the unbound vacancies.

It is also possible to estimate the ordering energy w from isothermal curves at

different temperatures in a quenched alloy. In fact, when a quench is performed from

Tq=973 K to T=293 K as in the present case, it can be assumed that from Tq to the

freezing temperature Tz=950 K, the degree of SRO maintains its dynamic equilibrium

value in consequence the enhanced diffusion taking place at these high temperatures.

Henceforth, the alloy is at room temperature in a state of order in equilibrium at Tz. If

the temperature is subsequently raised to T, it can readily be derived from Eqs (17)

and (18) in [17] that the evolved enthalpy is given by
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Hence, a plot of ∆H values from Fig. 1 vs. (1/Tz–1/T) allows the computation of

w from the slope of the resulting straight line. Such a plot is shown in Fig. 4 giving

w = –2.90 kJ mol–1

This value is in very good agreement with the –3.08 kJ mol–1 reported in a previ-

ous paper [9].

The isothermal traces corresponding to the deformed alloy are shown in Fig. 5

for the same annealing temperatures as those for the annealed material. These tem-

peratures are low enough for recovery by dislocation rearrangement to be absent [18].

Accordingly, if it is taken into account that the heat associated with defect annihila-

tion is more than one order of magnitude less than that involved in the isothermal

traces [19], this heat can be associated with SRO degree variations. These curves can

be seen to be characterized by one exothermic peak with a slower decay than for the
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Fig. 3 β vs. the reciprocal of the annealing temperature

Fig. 4 Reaction enthalpy vs. (1/Tz–1/T), Tz being the freezing temperature and T the
temperatures corresponding to the isothermal traces



annealed alloy. Further, the heights of the corresponding peaks are smaller. The y vs. t

curves are plotted for 380 and 420 K in Fig. 6, using the corresponding values already

obtained for the effective activation energies of defect migration calculated for the

annealed alloys with the sink density taken as an adjusting parameter. This assumes

as a first approximation that deformation does not alter the concentration ratio of

bound to unbound vacancies. For both curves, the best fits are obtained with an aver-

age sink density of about ρ=1.5⋅10–6 (δ = 0.3⋅1010 cm–2). This value is in good accord

with that to be expected from the metallurgical state of the alloy.

The areas under the isothermal traces for the deformed material were observed

to be lower than those for that quenched at each corresponding annealing tempera-

ture. Such behaviour may be attributed to the fact that the instantaneous concentra-

tion of deformation-induced point defects during the rolling procedure, together with
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Fig. 6 Reacted fraction vs. time curves at the indicated temperatures for the quenched-
deformed alloy, with the sink density used as an adjusting parameter

Fig. 5 Isothermal traces at the indicated temperatures for Cu–5 at.% Zn quenched from
973 K and 40% deformed by cold-rolling



the presence of point defects arising from quenching, are able to reorder the alloy at

room temperature to a higher degree than that after quenching before deformation.

Vickers hardness against annealing temperature curves are shown in Fig. 7 after

the SRO y vs. t plots approach unity. The decrease in hardness observed as the tem-

perature increases in both the annealed and the deformed alloys is a reflection of the

equilibrium decrease in SRO at higher temperatures, as may be expected. On the

other hand, the constancy of the enthalpy difference between the two alloys means

that no recovery takes place in the cold-rolled alloy. On use of the approach in

ref. [19] to evaluate energy variations associated with SRO equilibrium changes, the

degree of order reached after rolling was calculated to be equivalent to that at equilib-

rium at 845 K. Additionally, the low stacking fault density expected for this alloy

[20] favours non-conservative dislocation motion, which generates increased point

defects during deformation processes. This type of motion would be easier for less

dissociated dislocations, i.e. for alloys with high stacking fault energies. Because of

the high sink density, the surplus point defects partially anneal out very rapidly,

thereby contributing less to the ordering process during the isothermal treatment.

This fact can explain the lower ordering kinetics exhibited by the cold-rolled mate-

rial, which probably reaches the equilibrium degree of order with the assistance of

thermal point defects.

A family of isothermal traces with the defect sink density taken as a varying pa-

rameter are plotted for T=420 K in Fig. 8. This plot predicts that, for ρ>10–5, ordering

degrees close to that prevailing at equilibrium at Tz are reached since the enthalpy in-

volved in the reaction vanishes. In contrast, for low defect sink densities, the reaction

enthalpy becomes insensitive to them, which is the case for an annealed alloy, as may

be expected.

J. Therm. Anal. Cal., 65, 2001

VARSCHAVSKY, DONOSO: Cu–5 AT.% 193

Fig. 7 Vickers hardness vs. temperatures corresponding to the isothermal traces after
the equilibrium degree of SRO was reached; • – quenched and 40% cold-rolled
alloy, ▲ – quenched alloy. Room temperature values after quenching before any
isothermal treatment are also indicated



Finally, it is worth recalling that in the quenched and deformed material, for the

sink density level calculated here, ρ=1.5⋅10–6, and considering the low misfit parame-

ter ea=0.054 for this alloy system [21], solute segregation to partial dislocations can

be disregarded. In fact, with the application of Eqs 2, 20 and 21 in reference [22] and

the use of appropriate data for Cu–Zn alloys, the evolved heat due to segregation is

found to be 0.55 J mol–1, which is negligible as compared with 46.6 J mol–1 for the

heat evolved during the ordering process. Specific computations are not shown for

the sake of brevity.

Conclusions

The use of a modified first-order kinetic law allows a quite good reproduction of the

results of experimental isothermal calorimetric experiments on ordering under both

non-deformed and deformed alloy conditions. The effective activation energies of de-

fect migration are consistent with a simultaneous vacancy and solute–vacancy mech-

anism controlling the ordering process. The estimated solute–vacancy activation en-

ergy of migration, 91.2 kJ mol–1, seems a very reasonable value, as also is the

ordering energy, estimated as –2.90 kJ mol–1.
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